
Neural Architecture Search for End-to-End Speech Recognition via 

Straight-Through Gradients

基于直通梯度的端到端语音识别神经架构搜索

欧智坚
Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University

SLT 2021 Children Speech Recognition Challenge (CSRC) Workshop, 2021/1/30

http://oa.ee.tsinghua.edu.cn/ouzhijian/

ST-NAS



Outline

• CTC-CRF: 基于CTC拓扑的条件随机场
 ICASSP 2019, INTERSPEECH 2020

开源CAT (Crf based Asr Toolkit) https://github.com/thu-spmi/CAT

综合了混合系统和端到端系统的优势，在保持端到端系统简洁性同时，实
现了数据高效以及低延迟流式语音识别，在AISHELL中文语音识别错误率达
到了据我们所知最低的6.34% (4-gram LM) ！

• ST-NAS: 基于直通梯度的神经网络架构搜索
 SLT 2021

开源 https://github.com/thu-spmi/ST-NAS

面对应接不暇的神经网络架构，不妨试试我们提出的ST-NAS，在WSJ eval92
英文语音识别错误率达到了据我们所知最低的2.77% (4-gram LM) ！
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https://github.com/thu-spmi/CAT
https://github.com/thu-spmi/ST-NAS


CTC-CRF
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• 向鸿雨, 欧智坚.  
CRF-based Single-stage Acoustic Modeling with CTC Topology. ICASSP 2019. [Oral]

• 安柯宇, 向鸿雨, 欧智坚. 
CAT: A CTC-CRF based ASR Toolkit Bridging the Hybrid and the End-to-end Approaches 

towards Data Efficiency and Low Latency. INTERSPEECH 2020.
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Introduction
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• ASR is a discriminative problem

 For acoustic observations 𝒙 ≜ 𝑥1, ⋯ , 𝑥𝑇, find the most likely labels 𝒚 ≜ 𝑦1, ⋯ , 𝑦𝐿

• ASR state-of-the-art: DNNs of various network architectures (Hinton NIPSw2009, 
Microsoft IS2011)

端到端系统

语音到文字
𝑃 𝑌|𝑋

特征
提取

训练
单音子

训练
三音子

训练
神经网络

查一下明天从北京到杭州的机票

语音信号𝒙 文字序列𝒚

多阶段系统



• End-to-end system:
• Eliminate GMM-HMM pre-training and tree building, and can be trained from scratch 

(flat-start or single-stage).

• In a more strict sense:
• Remove the need for a pronunciation lexicon and, even further, train the acoustic and 

language models jointly rather than separately

• Data-hungry

Motivation
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We advocate data-efficient end2end speech recognition,  which uses a 
separate language model (LM) with or without a pronunciation lexicon.

 Text corpus for language modeling are cheaply available.

 Data-efficient



Related work

1. How to obtain 𝑝 𝒚 | 𝒙

2. How to handle alignment, since 𝐿 ≠ 𝑇
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ASR is a discriminative problem

 For acoustic observations 𝒙 ≜ 𝑥1, ⋯ , 𝑥𝑇, find the most likely labels 𝒚 ≜ 𝑦1, ⋯ , 𝑦𝐿

Observations 𝒙 = 𝑥1⋯𝑥𝑇

Labels
𝒚
∥
𝑦1
⋮
𝑦𝐿

𝐿 ≠ 𝑇

𝜋1 𝜋2

𝜋3 𝜋5𝜋4

𝜋6

𝜋7 𝜋8

 Explicitly by state sequence 𝝅 ≜ 𝜋1, ⋯ , 𝜋𝑇 in HMM, CTC, RNN-T, or implicitly in Seq2Seq



Related work
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 Explicitly by state sequence 𝝅 ≜ 𝜋1, ⋯ , 𝜋𝑇 in HMM, CTC, RNN-T, or implicitly in Seq2Seq

 State topology : determines a mapping ℬ, which map 𝝅 to a unique 𝒍

𝑝 𝒚 𝒙 = ෍

𝝅∈ℬ−1(𝒍)

𝑝(𝝅|𝒙)

Graves, et al., “Connectionist Temporal Classification: Labelling unsegmented sequence data with RNNs”, ICML 2006. 

CTC topology : a mapping ℬ maps 𝝅 to 𝒍 by
1. removing all repetitive symbols between the blank symbols.
2. removing all blank symbols. 

ℬ −𝐶𝐶 − −𝐴𝐴 − 𝑇 − = 𝐶𝐴𝑇

How to handle alignment, since 𝐿 ≠ 𝑇

 Admit the smallest number of units in state inventory, by 
adding only one <blk>  to label inventory.

 Avoid ad-hoc silence insertions in estimating 
denominator LM of labels.



𝜋𝑡−1

𝑥𝑡−1

𝜋𝑡

𝑥𝑡 𝑥𝑡+1

𝜋𝑡+1 𝑦𝑖−1 𝑦𝑖

𝒙

𝑦𝑖+1 𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

CTC-CRFAttentionDNN-HMM

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

CTC
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缺陷: 𝜋𝑡 条件独立性 缺陷: 𝑦𝑖 有向图序列模型缺陷:多阶段

GMM-HMM
(IBM, AT&T, 1980s)

DNN-HMM
(Hinton NIPSw09; Microsoft IS11)

CTC
(Graves ICML06; Google IC15)

Attention Seq2Seq
(Google IC16)

CTC-CRF
(Xiang&Ou IC19)

RNN-T
(Graves ICML12; 
Google ASRU17)

Related work How to obtain 𝑝 𝒚 | 𝒙

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

RNN-T
缺陷: 𝜋𝑡 有向图序列模型

𝑝 𝒚 𝒙 = ෍

𝝅∈ℬ−1(𝒍)

𝑝(𝝅|𝒙)

历史上各类模型具有不
同的图结构，

CTC-CRF占有独特位置！

CRFCTC

联合神经网络与无向图模型



CTC vs CTC-CRF
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CTC CTC-CRF

𝑝 𝒍 𝒙 = σ𝝅∈ℬ−1(𝒍)𝑝(𝝅|𝒙), using CTC topology ℬ

State Independence

𝑝 𝝅 𝒙;𝜽 =ෑ

𝑡=1

𝑇

𝑝 𝜋𝑡 𝒙

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1 𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

Node potential, by NN

by n-gram denominator LM of labels, like in LF-MMI

𝑝 𝝅 𝒙; 𝜽 =
𝑒𝜙(𝝅,𝒙;𝜽)

σ𝝅′ 𝑒
𝜙(𝝅′,𝒙;𝜽)

𝜙 𝝅, 𝒙; 𝜽 =෍
𝑡=1

𝑇 log 𝑝 𝜋𝑡 𝒙
+ log𝑝𝐿𝑀 (ℬ(𝝅)) Edge potential,

𝜕log 𝑝 𝒍 𝒙; 𝜽

𝜕𝜽
= 𝔼𝑝(𝝅|𝒍,𝒙;𝜽)

𝜕log 𝑝 𝝅|𝒙; 𝜽

𝜕𝜽

𝜕log 𝑝 𝒍 𝒙; 𝜽

𝜕𝜽
= 𝔼𝑝(𝝅|𝒍,𝒙;𝜽)

𝜕𝜙 𝝅, 𝒙; 𝜽

𝜕𝜽
− 𝔼𝑝(𝝅′|𝒙;𝜽)

𝜕𝜙 𝝅′, 𝒙; 𝜽

𝜕𝜽



SS-LF-MMI vs CTC-CRF
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SS-LF-MMI CTC-CRF

State topology HMM topology with two states CTC topology

Silence label

Using silence labels. 

Silence labels are randomly inserted 
when estimating denominator LM.

No silence labels.  Use <blk> to absorb 
silence. 

 No need to insert silence labels to 
transcripts.

Decoding No spikes.
The posterior is dominated by <blk> and 

non-blank symbols occur in spikes.
 Speedup decoding by skipping blanks.

Implementation
Modify the utterance length to one 
of 30 lengths; use leaky HMM.

 No length modification; no leaky 
HMM.



Experiments

• We conduct our experiments on three benchmark datasets: 
• WSJ 80 hours
• Switchboard 300 hours
• Librispeech 1000 hours

• Acoustic model: 6 layer BLSTM with 320 hidden dim, 13M parameters

• Adam optimizer with an initial learning rate of 0.001, decreased to 0.0001 when 
cv loss does not decrease

• Implemented with Pytorch.

• Objective function (use the CTC objective function to help convergences):
𝒥𝐶𝑇𝐶−𝐶𝑅𝐹 + 𝛼𝒥𝐶𝑇𝐶

• Decoding score function (use word-based language models, WFST based 
decoding):

log 𝑝 𝒍 𝒙 + 𝛽 log 𝑝𝐿𝑀(𝒍)
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Experiments (Comparison with CTC, phone based)

Model Unit LM SP dev93 eval92

CTC Mono-phone 4-gram N 10.81% 7.02%

CTC-CRF Mono-phone 4-gram N 6.24% 3.90%

Model Unit LM SP SW CH

CTC Mono-phone 4-gram N 12.9% 23.6%

CTC-CRF Mono-phone 4-gram N 11.0% 21.0%

Model Unit LM SP Dev Clean Dev Other Test Clean Test Other

CTC Mono-phone 4-gram N 4.64% 13.23% 5.06% 13.68%

CTC-CRF Mono-phone 4-gram N 3.87% 10.28% 4.09% 10.65%

WSJ 80h

Switchboard 300h

Librispeech 1000h

44.4%

14.7%

SP: speed perturbation for 3-fold data augmentation.

19.1%

13

11%

22.1%



Model SW CH Average Source

Kaldi chain triphone 9.6 19.3 14.5 IS 2016

Kaldi e2e chain monophone 11.0 20.7 15.9 ASLP 2018, 26M

Kaldi e2e chain biphone 9.8 19.3 14.6 ASLP 2018, 26M

CTC-CRF monophone 10.3 19.7 15.0 ICASSP 2019, BLSTM, 13M

CTC-CRF monophone 9.8 18.8 14.3 IS 2020, VGG BLSTM, 16M

DNN-HMM triphone 9.8 19.0 14.4 RWTH IS 2018

DNN-HMM triphone 9.6 19.3 14.5 IBM IS 2019

Seq2Seq subword 11.8 25.7 18.8 RWTH IS 2018, LSTM-LM

Seq2Seq subword 10.7 20.7 15.7 Espnet ASRU19

Experiments (Comparison with STOA)

Switchboard 300h
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10%

RWTH IS 2018, “Improved training of end-to-end attention models for speech recognition”.
RWTH IS 2019, “RWTH ASR Systems for LibriSpeech Hybrid vs Attention -- Data Augmentation”.
IBM IS19, “Forget a Bit to Learn Better Soft Forgetting for CTC-based Automatic Speech Recognition”.
Espnet ASRU19, “Espresso: A Fast End-to-end Neural Speech Recognition Toolkit”.
Google IS19, “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition”.



Model Test Clean Test Other Source

Kaldi chain triphone 4.28 - IS 2016

CTC-CRF monophone 4.0 10.6 ICASSP 2019, BLSTM(6,320), 13M

DNN-HMM triphone 4.4 10.0 RWTH IS 2019

Seq2Seq subword 4.8 15.3 RWTH IS 2018

Seq2Seq subword 4.0 12.0 Espnet ASRU19

Seq2Seq subword 4.1 12.5 Google IS19 (w/o SpecAugment)

Experiments (Comparison with STOA)

Librispeech 1000h
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RWTH IS 2018, “Improved training of end-to-end attention models for speech recognition”.
RWTH IS 2019, “RWTH ASR Systems for LibriSpeech Hybrid vs Attention -- Data Augmentation”.
IBM IS19, “Forget a Bit to Learn Better Soft Forgetting for CTC-based Automatic Speech Recognition”.
Espnet ASRU19, “Espresso: A Fast End-to-end Neural Speech Recognition Toolkit”.
Google IS19, “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition”.



Aishell-1 results

• 170 hours mandarin speech corpus
• 400 speakers from different accent areas
• 15% CER reduction compared with LF-MMI
• 5% CER reduction compared with end-to-end transformer

[1] D. Povey, A. Ghoshal, and et al, “The Kaldi speech recognition toolkit,” ASRU 2011.
[2] S. Karita, N. Chen, and et al, “A comparative study on transformer vs RNN in speech applications,” ASRU 2019.
[3] Keyu An, Hongyu Xiang, and Zhijian Ou, “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the end-to-end 
approaches towards data efficiency and low latency,” INTERSPEECH 2020.

Model %CER

LF-MMI with i-vector [1] 7.43

Transformer [2] 6.7

CTC-CRF [3] 6.34



• 400 hours of data, targeting to boost children speech recognition research.
• Evaluated on 10 hours of children’s reading and conversational speech.
• 3 baselines (Chain model, Transformer and CTC-CRF) are provided.

model Chain model Transformer CTC-CRF

CER% 28.75 27.28 25.34

Fan Yu, Zhuoyuan Yao, Xiong Wang, Keyu An, Lei Xie, Zhijian Ou, Bo Liu, Xiulin Li, Guanqiong Miao. The SLT 2021 
children speech recognition challenge: Open datasets, rules and baselines. SLT 2021.



基于条件随机场的高效端到端语音识别 –总结

• 在WSJ、Switchboard、Librispeech，性能表现均超过了

• CTC、Attention Seq2Seq（15%相对改进），

• 现在广为流行的Kaldi工具包中的端对端模型e2e Chain-model
（10%相对改进），

• 与多阶段Chain-model持平，

• 同时具有训练流程简洁、能充分利用词典及语言模型从而数据
利用效率高等优势。
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1.CAT contains a full-fledged implementation of CTC-CRF
• Fast parallel calculation of gradients using CUDA C/C++ interface

2.CAT adopts PyTorch to build DNNs

3.CAT provides a complete workflow with example recipes

4.Flexibility and future work
Streaming ASR <- INTRESPEECH 2020

• CRFs with different topologies (e.g., RNN-T)

• Multi-lingual, Code-mix

NAS <- SLT 2021

• …

19

开源 Crf-based Asr Toolkit (CAT)

https://github.com/thu-spmi/cat

https://github.com/thu-spmi/cat


ST-NAS
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• 郑华焕, 安柯宇, 欧智坚. Efficient Neural Architecture Search for End-to-end Speech 
Recognition via Straight-Through Gradients. SLT 2021.
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Motivation

controller evaluator

1. Early NAS methods

2. Recent gradient-based NAS methods 

(DARTS, SNAS, ProxylessNAS)

3. (ours) Straight-Through gradient NAS (ST-NAS)

• End-to-end ASR reduces expert efforts by automating feature engineering, but raises 

a demand for architecture engineering.

• Neural architecture search (NAS), the process of automating architecture 

engineering, is an appealing next step to advancing end-to-end ASR.

computation expensive,

1000+ GPU days 

Improved, 

but still memory expensive (DARTS, SNAS),

or using ad-hoc trick (ProxylessNAS) 

Back-Prop ST gradients through the sampled edge,

Efficient in both memory and computation, 

Less than 3-fold computation time 

forward backward
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Gradient-based NAS: representing the search space as 

a weighted directed acyclic graph (DAG)

Ω𝑖1𝑗(⋅)
𝑥𝑖1 𝑥𝑗

Ω𝑖2𝑗(⋅)
𝑥𝑖2

Ω𝑖𝐴𝑗(⋅)𝑥𝑖𝐴

······

𝓐𝒋

NN architecture as graph

directed edge: 

an operation (OP)

Ω𝑖𝑗(⋅)

intermediate 

features

Forward computation in general

The DAG of NAS: "supernet"

candidate

operations architecture weight

OP1

OP2

OP3

OP1

OP2

OP3

OP1

OP2

OP3
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Gradient-based NAS: representing the search space as 

a weighted directed acyclic graph (DAG)

Ω𝑖1𝑗(⋅)
𝑥𝑖1 𝑥𝑗

Ω𝑖2𝑗(⋅)
𝑥𝑖2

Ω𝑖𝐴𝑗(⋅)𝑥𝑖𝐴

······

𝓐𝒋

NN architecture as graph

directed edge: 

an operation (OP)

Ω𝑖𝑗(⋅)

intermediate 

features

Forward computation in general

OP1

OP3

OP2

The sampled sub-graph
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Related work: DARTS, SNAS and ProxylessNAS

[1] H Liu, K Simonyan, and Y Yang, “DARTS: Differentiable architecture search,” in ICLR, 2019.

[2] S Xie, H Zheng, et al, “SNAS: stochastic neural architecture search,” in ICLR, 2019.

[3] H Cai, L Zhu, and S Han, “ProxylessNAS: Direct neural architecture search on target task and hardware,” 

in ICLR, 2019.

[4] E Jang, S Gu, and B Poole, “Categorical reparameterization with Gumbel-Softmax,” in ICLR, 2017.

[5] M Courbariaux, Y Bengio, and J David, “BinaryConnect: training deep neural networks with binary weights 

during propagations,” NIPS, 2015.

DARTS

Definition

Limitation
Continuous relaxation;

Require 𝐾 × memory and time

Ideally

0

1

0

is one-hot vector
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Related work: DARTS, SNAS and ProxylessNAS

[1] H Liu, K Simonyan, and Y Yang, “DARTS: Differentiable architecture search,” in ICLR, 2019.

[2] S Xie, H Zheng, et al, “SNAS: stochastic neural architecture search,” in ICLR, 2019.

[3] H Cai, L Zhu, and S Han, “ProxylessNAS: Direct neural architecture search on target task and hardware,” 

in ICLR, 2019.

[4] E Jang, S Gu, and B Poole, “Categorical reparameterization with Gumbel-Softmax,” in ICLR, 2017.

[5] M Courbariaux, Y Bengio, and J David, “BinaryConnect: training deep neural networks with binary weights 

during propagations,” NIPS, 2015.

SNAS

Same as DARTS

DARTS

Definition

Limitation
Continuous relaxation;

Require 𝐾 × memory and time
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Related work: DARTS, SNAS and ProxylessNAS

[1] H Liu, K Simonyan, and Y Yang, “DARTS: Differentiable architecture search,” in ICLR, 2019.

[2] S Xie, H Zheng, et al, “SNAS: stochastic neural architecture search,” in ICLR, 2019.

[3] H Cai, L Zhu, and S Han, “ProxylessNAS: Direct neural architecture search on target task and hardware,” 

in ICLR, 2019.

[4] E Jang, S Gu, and B Poole, “Categorical reparameterization with Gumbel-Softmax,” in ICLR, 2017.

[5] M Courbariaux, Y Bengio, and J David, “BinaryConnect: training deep neural networks with binary weights 

during propagations,” NIPS, 2015.

ProxylessNAS

The loss is not explicitly 

shown in the original paper

SNAS

Same as DARTS

DARTS

Definition

Limitation
Continuous relaxation;

Require 𝐾 × memory and time
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ST (Straight-Through) NAS

Y Bengio, N Leonard, and A Courville, “Estimating or propagating gradients through stochastic neurons for conditional 

computation,” arXiv 2013.

forward

backward

Comparison of different gradient-based NAS methods. 
• Computation costs are estimated relative to 

training a single model.

• 𝐶1 : the memory size for training a single model.

• 𝐶2 : the average memory size for storing the 

output features for all connected pairs of nodes 

in a sub-graph. Usually we have 𝐶2 ≪ 𝐶1 .

continous relaxation

Using ST gradients to support sub-graph sampling is key to achieve efficient NAS beyond DARTS and SNAS.

straight-through gradient SNAS DARTS



29

ST-NAS: overview

Objective: 

sampled sub-graphMonte Carlo estimation

warmup

search

retrain

ST-NAS procedure

*

freeze 

alternately update

OP1

OP2

OP3

NN parameters architecture weights 
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Experiments: ASR system

Audio Feature

Acoustic

Model

CTC/CTC-CRF

lossSettings:

1. Datasets: 80-hour WSJ and 300-hour 

Switchboard.

2. LM: n-gram model.

3. Loss: CTC/CTC-CRF based on CAT [1].

4. Candidate operations:
• TDNN-1-1 (-{C}-{D})

• TDNN-1-2

• TDNN-2-1

• TDNN-2-2

• TDNN-3-1 (Switchboard)

• TDNN-3-2 (Switchboard)

5. Search space:

• WSJ: 46 = 𝟒𝟎𝟗𝟔

• Switchboard: 66 ≈ 𝟒𝟕𝟎𝟎𝟎

Overview of

training framework
Backbone of supernet

[1] K An, H Xiang, and Z Ou, “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the 

end-to-end approaches towards data efficiency and low latency,” INTERSPEECH, 2020.

input

output

half of context 

dilation

FC

Subsampling

𝑥8

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

searching

block

Conditional Random Field
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Experiments: WSJ

The red lines indicate one of the derived single model from the 5 runs of NAS on WSJ.

The evolution of architecture probabilities for the searching blocks in the NAS run that 

yields the derived single model above.
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Experiments: results on WSJ

Methods eval92 dev93

EE-Policy-CTC [1] 5.53 9.21

SS-LF-MMI [2] 3.0 6.0

EE-LF-MMI [3] 3.0 -

FC-SR [4] 3.5 6.8

ESPRESSO [5] 3.4 5.9

CTC
BLSTM 4.93 8.57

ST-NAS 4.72±0.03 8.82±0.07

CTC-CRF

BLSTM [6] 3.79 6.23

VGG-BLSTM [7] 3.2 5.7

TDNN-D* [8] 2.91 6.24

Random search 2.82±0.01 5.71±0.03

ST-NAS 2.77±0.00 5.68±0.01

ST-NAS with fully CTC-CRF 2.81±0.01 5.74±0.02

WERs on the WSJ.

[1] Y Zhou, C Xiong, et al, “Improving end-to-end speech recognition with 

policy learning,” ICASSP, 2018.

[2] H Hadian, H Sameti, et al, “Flat-start single-stage discriminatively 

trained HMM-Based models for ASR,” TASLP, 2018. 

[3] H Hadian, H Sameti, et al, “End-to-end speech recognition using 

lattice-free MMI,” INTERSPEECH, 2018.

[4] N Zeghidour, Q Xu, et al, “Fully convolutional speech recognition,” 

arXiv preprint arXiv:1812.06864, 2018.

[5] Y Wang, T Chen, et al, “Espresso: A fast endto-end neural speech 

recognition toolkit,”  ASRU, 2019.

[6] H Xiang and Z Ou, “CRF-based single-stage acoustic modeling with 

CTC topology,” ICASSP, 2019.

[7] K An, H Xiang, et al, “CAT: A CTC-CRF based ASR toolkit bridging the 

hybrid and the end-to-end approaches towards data efficiency and low 

latency,” INTERSPEECH, 2020.

[8] V Peddinti, Y Wang, et al, “Low latency acoustic modeling using 

temporal convolution and LSTMs,” IEEE SPL, 2018.
* Obtained based on our implementation of the “TDNN-D” in [8].

outperforming all other end-to-end ASR models
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Methods eval92 dev93

EE-Policy-CTC [1] 5.53 9.21

SS-LF-MMI [2] 3.0 6.0

EE-LF-MMI [3] 3.0 -

FC-SR [4] 3.5 6.8

ESPRESSO [5] 3.4 5.9

CTC
BLSTM 4.93 8.57

ST-NAS 4.72±0.03 8.82±0.07

CTC-CRF

BLSTM [6] 3.79 6.23

VGG-BLSTM [7] 3.2 5.7

TDNN-D* [8] 2.91 6.24

Random search 2.82±0.01 5.71±0.03

ST-NAS 2.77±0.00 5.68±0.01

ST-NAS with fully CTC-CRF 2.81±0.01 5.74±0.02

* Obtained based on our implementation of the “TDNN-D” in [8].

Better performance with lighter model,

under the same CTC-CRF loss

Experiments: results on WSJ
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Architectures searched with CTC are 

transferable to be retrained with CTC-CRF.
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Experiments: results on Switchboard

Methods SW CH Params

TDNN-D-Small 15.2 26.8 7.64M

TDNN-D-Large 14.6 25.5 11.85M

ST-NAS
Transferred from WSJ 12.5 23.2 11.89M

Searched on Switchboard 12.6 23.2 15.98M

WERs on the Switchboard.

1. All experiments are trained with CTC-CRF. TDNN-D-Small is with the hidden size of 640, 

which is the same as that of our searched models. TDNN-D-Large is with the hidden size of 800.

2. The transferred model is randomly taken from one of the 5 runs of NAS with CTC over WSJ, 

and retrained on Switchboard.

The architecture searched in WSJ 

is transferable to Switchboard.
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Conclusions

1. We review existing gradient-based NAS methods and develop an 

efficient NAS method via Straight-Through gradients (ST-NAS).

2. We successfully apply ST-NAS to end-to-end ASR. Our ST-NAS 

induced architectures significantly outperform the human-designed 

architecture across the WSJ and Switchboard datasets. 

3. The ST-NAS method is flexible and can be further explored with 

various backbones of the supernet and candidate operations.

NAS is an appealing next step to advancing end-to-end ASR.
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