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CTC-CRF

CRF-based Single-stage Acoustic Modeling with CTC Topology. ICASSP 2019. [Oral]
o CERTF, (AR, BRI

CAT: A CTC-CRF based ASR Toolkit Bridging the Hybrid and the End-to-end Approaches
towards Data Efficiency and Low Latency. INTERSPEECH 2020.
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Introduction

* ASR is a discriminative problem
= For acoustic observations x = x4, -+, x7, find the most likely labels y = y4,---, y;

e ASR state-of-the-art: DNNs of various network architectures (Hinton NIPSw2009,
Microsoft 1S2011)
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Motivation

* End-to-end system:

* Eliminate GMM-HMM pre-training and tree building, and can be trained from scratch
(flat-start or single-stage).

°* |n @ more strict sense:

* Remove the need for a pronunciation lexicon and, even further, train the acoustic and
language models jointly rather than separately

e Data-hungry

We advocate data-efficient end2end speech recognition, which uses a
separate language model (LM) with or without a pronunciation lexicon.
= Text corpus for language modeling are cheaply available.
= Data-efficient




Related work

ASR is a discriminative problem
» For acoustic observations x = x4, -+, x7, find the most likely labels y = y4,---, y;

1. How to obtain p(y | x)
2. How to handle alighment, since L # T
= Explicitly by state sequence ™ £ m, ---, my in HMM, CTC, RNN-T, or implicitly in Seg2Seq

Labels
y L+T

I
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YL

Observations x = x4 -* xp




RElated WOrk How to handle alignment, since L # T

= Explicitly by state sequence T £ m, ---, s in HMM, CTC, RNN-T, or implicitly in Seg2Seq
« State topology : determines a mapping B, which map 7 to a unique [

POl = ) p@Elx)
meB-1(1)

CTC topology : a mapping B maps 1 to L by
1. removing all repetitive symbols between the blank symbols.

2. removing all blank symbols.
B(—CC — —AA—-T —) = CAT

© Admit the smallest number of units in state inventory, by
adding only one <blk> to label inventory.

© Avoid ad-hoc silence insertions in estimating
denominator LM of labels.

Graves, et al., “Connectionist Temporal Classification: Labelling unsegmented sequence data with RNNs”, ICML 2006.



Related work How to obtain p(y | x)

RNN-T
DNN-HMM Attention Seq2Seq (Graves ICML12;
(Hinton NIPSw09; Microsoft I1511)  (Google IC16) Google ASRU17)
GMM-HMM CTC CTC-CRF
(IBM, AT&T, 1980s) (Graves ICMLO6; Google IC15) (Xiang&Ou I1C19)
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CTCvs CTC-CRF

CTC

CTC-CRF

p(llx) = ZneB—l(l) p(1|x), using CTC topology B

State Independence

T
p(lx;0) = | [prln)
t=1

e $(mx;0)
Zn'/ e¢(n',x;0)/

T log p(m¢|x)
T, x;0) = Z ;
¢( ) t=1 (+ log PLm (B(Tl’)) Edge potential,

by n-gram denominator LM of labels, like in LF-MMI

p(m|x; 0) = Node potential, by NN

dlog p(l|x; 0) dlog p(r|x; @)

FY: = Ep(niix0) [ Y:

dlogp(l|x; 6)
a0

' x; 9)]

10



SS-LF-MMI vs CTC-CRF

State topology HMM topology with two states CTC topology

No silence labels. Use <blk> to absorb
silence.
© No need to insert silence labels to
transcripts.

Using silence labels.

Silence label | Silence labels are randomly inserted
when estimating denominator LM.

The posterior is dominated by <blk> and
Decoding No spikes. non-blank symbols occur in spikes.
© Speedup decoding by skipping blanks.

Modify the utterance length to one © No length modification; no leaky

Implementation | ¢ 5, lengths; use leaky HMM. HMM.




Experiments

* We conduct our experiments on three benchmark datasets:

e WSJ 80 hours
e Switchboard 300 hours
* Librispeech 1000 hours

e Acoustic model: 6 layer BLSTM with 320 hidden dim, 13M parameters

* Adam optimizer with an initial learning rate of 0.001, decreased to 0.0001 when
cv loss does not decrease

* Implemented with Pytorch.
* Objective function (use the CTC objective function to help convergences):

Jderc—crr + Adcrc

* Decoding score function (use word-based language models, WFST based
decoding):

logp(llx) + Blogpy (D)

12



Experiments (Comparison with CTC, phone based)

WSJ 80h
Model Unit dev93 eval92
CTC Mono-phone 4-gram N 10.81% 7.02%I 44.4%
CTC-CRF Mono-phone 4-gram N 6.24% 3.90%‘1’
Switchboard 300h
Model Unit LM SP SW CH
CTC Mono-phone A-gram N 12.9%I 1479 23.6% I 11%
CTC-CRF Mono-phone 4-gram N 11.0%‘1' 21.0% ‘l'

Librispeech 1000h

CTC

SP

Dev Clean

Dev Other

Mono-phone

4-gram

4.64%

13.23%

Test Clean
5.06%]

Test Other

13.68%
‘ 2.1%

CTC-CRF

Mono-phone

4-gram

3.87%

10.28%

4.09% 41

”0.65%

SP: speed perturbation for 3-fold data augmentation.
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Experiments (Comparison with STOA)

Switchboard 300h
Model SW CH Average Source

Kaldi chain triphone 9.6 19.3 14.5 IS 2016
Kaldi e2e chain monophone 11.0 20.7 15.9¢ | ASLP 2018, 26M
Kaldi e2e chain biphone 9.8 19.3 14.6| | ASLP 2018, 26M
CTC-CRF monophone 10.3 19.7 15.0 | ICASSP 2019, BLSTM, 13M
CTC-CRF monophone 9.8 18.8 14.3Y | IS 2020, VGG BLSTM, 16M
DNN-HMM triphone 9.8 19.0 14.4 RWTH IS 2018
DNN-HMM triphone 9.6 19.3 14.5 IBM IS 2019
Seqg2Seq subword 11.8 25.7 18.8 RWTH IS 2018, LSTM-LM
Seqg2Seq subword 10.7 20.7 15.7 Espnet ASRU19

RWTH IS 2018, “Improved training of end-to-end attention models for speech recognition”.

RWTH IS 2019, “RWTH ASR Systems for LibriSpeech Hybrid vs Attention -- Data Augmentation”.

IBM 1S19, “Forget a Bit to Learn Better Soft Forgetting for CTC-based Automatic Speech Recognition”.
Espnet ASRU19, “Espresso: A Fast End-to-end Neural Speech Recognition Toolkit”.

Google 1S19, “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition”.
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Experiments (Comparison with STOA)

Librispeech 1000h

Model Test Clean Test Other Source
Kaldi chain triphone 4.28 - 1S 2016
CTC-CRF monophone 4.0 10.6 ICASSP 2019, BLSTM(6,320), 13M
DNN-HMM triphone 4.4 10.0 RWTH IS 2019
Seg2Seq subword 4.8 15.3 RWTH IS 2018
Seg2Seq subword 4.0 12.0 Espnet ASRU19
Seq2Seq subword 4.1 12.5 Google 1S19 (w/o SpecAugment)

RWTH IS 2018, “Improved training of end-to-end attention models for speech recognition”.

RWTH IS 2019, “RWTH ASR Systems for LibriSpeech Hybrid vs Attention -- Data Augmentation”.

IBM 1S19, “Forget a Bit to Learn Better Soft Forgetting for CTC-based Automatic Speech Recognition”.
Espnet ASRU19, “Espresso: A Fast End-to-end Neural Speech Recognition Toolkit”.

Google 1S19, “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition”.
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Aishell-1 results

e 170 hours mandarin speech corpus

* 400 speakers from different accent areas

* 15% CER reduction compared with LF-MMI

* 5% CER reduction compared with end-to-end transformer

Model %CER

LF-MMI with i-vector [1] 7.43
Transformer [2] 6.7
CTC-CRF [3] 6.34

[1] D. Povey, A. Ghoshal, and et al, “The Kaldi speech recognition toolkit,” ASRU 2011.

[2] S. Karita, N. Chen, and et al, “A comparative study on transformer vs RNN in speech applications,” ASRU 2019.

[3] Keyu An, Hongyu Xiang, and Zhijian Ou, “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the end-to-end
approaches towards data efficiency and low latency,” INTERSPEECH 2020.



2021 SLT CHILDREN
SPEECH RECOGNITION CHALLENGE (CSRC)

oreanzer: (@) Fhzird @ dard O AMKE ) BERER &

* 400 hours of data, targeting to boost children speech recognition research.
* Evaluated on 10 hours of children’s reading and conversational speech.
* 3 baselines (Chain model, Transformer and CTC-CRF) are provided.

CER% 28.75 27.28 25.34

Fan Yu, Zhuoyuan Yao, Xiong Wang, Keyu An, Lei Xie, Zhijian Ou, Bo Liu, Xiulin Li, Guangiong Miao. The SLT 2021
children speech recognition challenge: Open datasets, rules and baselines. SLT 2021.
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FFi& Crf-based Asr Toolkit (CAT)

1.CAT contains a full-fledged implementation of CTC-CRF

 Fast parallel calculation of gradients using CUDA C/C++ interface

2.CAT adopts PyTorch to build DNNs
3.CAT provides a complete workflow with example recipes

4.Flexibility and future work
v'Streaming ASR <- INTRESPEECH 2020
e CRFs with different topologies (e.g., RNN-T)
e Multi-lingual, Code-mix
v'NAS <- SLT 2021

https://github.com/thu-spmi/cat

19


https://github.com/thu-spmi/cat

ST-NAS

KA, 22 F] 5=, BRET IR, Efficient Neural Architecture Search for End-to-end Speech
Recognition via Straight-Through Gradients. SLT 2021.
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Motivation

(

N
« End-to-end ASR reduces expert efforts by automating feature engineering, but raises

a demand for architecture engineering.
« Neural architecture search (NAS), the process of automating architecture

engineering, is an appealing next step to advancing end-to-end ASR.

g Y,
1. Early NAS methods 3. (ours) Straight-Through gradient NAS (ST-NAS)
computation expensive,  (~ \ _____ @ . __ Q
controller evaluator| 1500+ GPU days ®
\/‘ forward backward

Back-Prop ST gradients through the sampled edge,
Efficient in both memory and computation,

Less than 3-fold computation time ©

2. Recent gradient-based NAS methods
(DARTS, SNAS, ProxylessNAS)

Improved,
but still memory expensive (DARTS, SNAS),

or using ad-hoc trick (ProxylessNAS) & -



Gradient-based NAS: representing the search space as
a weighted directed acyclic graph (DAG)

NN architecture as graph

The DAG of NAS: "supernet”
...... OP, OP, OP,

7

directed edge:
an operation (OP)

Qi)

N\

J

mtermedlate
features

ilj ()

candidate
operations

Oéz(-f) architecture weight

&

-— -

Forward computation in general
Py () 2> x5 = Y Qij(zs)

Qi ,;()

ﬁé_'_ : ﬁ@i@
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Gradient-based NAS: representing the search space as
a weighted directed acyclic graph (DAG)

NN architecture as graph The sampled sub-graph

o)
- ~ \\/1 * ......
directed edge: |ntermed|ate

an operation (OP) features

Qi)

&

ilj ()

e

Forward computation in general
izj(') l:> T, = Z Q’U (CB'L

Qi ,;()

e ===
I -

I .

I .
R S e — —_——— -
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Related work: DARTS, SNAS and ProxylessNAS

DARTS Ideally

L, 0) = E.np,(2)[Lo(2)]
P 0
DARTS () — *) o5 (g,
Definition | % (%) ;W” 0 () @ 1 @
k .0 _-
(k) _ eXP(@ij)) e '
(] Zf/:l exp(agf’)) Zz(k) _ ]., OPk 1S sampled
J 0, others
o Continuous relaxation; :
Limitation Require K x memory and time k Zii ulti(m;;) is one-hot vector |

[1] H Liu, K Simonyan, and Y Yang, “DARTS: Differentiable architecture search,” in ICLR, 2019.

[2] S Xie, H Zheng, et al, “SNAS: stochastic neural architecture search,” in ICLR, 2019.

[3] H Cai, L Zhu, and S Han, “ProxylessNAS: Direct neural architecture search on target task and hardware,”

in ICLR, 20109.

[4] E Jang, S Gu, and B Poole, “Categorical reparameterization with Gumbel-Softmax,” in ICLR, 2017.

[5] M Courbariaux, Y Bengio, and J David, “BinaryConnect: training deep neural networks with binary weights
during propagations,” NIPS, 2015.



Related work: DARTS, SNAS and ProxylessNAS

W

Zk’ 1exp( ( ))

DARTS SNAS
E’(a: 0) = Eynpa(y)[Lo(y)]
K
DARTS . (k) (k) SNAS k) (k
Definition | (@) = Dm0y (@) | (e Zy( loij (@
k=1
k) _ exp(a ())

yg?) = GumbelSo ftmazx(a;, k)

Limitation

Continuous relaxation;
Require K X memory and time

Same as DARTS

[1] H Liu, K Simonyan, and Y Yang, “DARTS: Differentiable architecture search,” in ICLR, 2019.
[2] S Xie, H Zheng, et al, “SNAS: stochastic neural architecture search,” in ICLR, 2019.
[3] H Cai, L Zhu, and S Han, “ProxylessNAS: Direct neural architecture search on target task and hardware,”

in ICLR, 20109.

[4] E Jang, S Gu, and B Poole, “Categorical reparameterization with Gumbel-Softmax,” in ICLR, 2017.
[5] M Courbariaux, Y Bengio, and J David, “BinaryConnect: training deep neural networks with binary weights
during propagations,” NIPS, 2015.



Related work: DARTS, SNAS and ProxylessNAS

DARTS SNAS ProxylessNAS
E’(a: 0) = Eynpa (v) [Lo(y)]
K K
DARTS B (k) () SNAS k) (k k) (k
Definition | *is (i) = Z Ty i (@) | ' ZZJ( : ( N(20) | Quj(2i) = Zzij)of;j)(:ci)
k=1 k=1
OB G ) ®) _ GumbelSoftmaz(au;, k) Multi(r,;)
1 L/ yz — umoetoojimar\ c;q, Ziq ULTT\TT; 5
’ Zk' 1exp( ol )) ! ! ’ ’
L. Continuous relaxation; The loss is not explicitly
Limitation Require K X memory and time Same as DARTS shown in the original paper

[1] H Liu, K Simonyan, and Y Yang, “DARTS: Differentiable architecture search,” in ICLR, 2019.

[2] S Xie, H Zheng, et al, “SNAS: stochastic neural architecture search,” in ICLR, 2019.

[3] H Cai, L Zhu, and S Han, “ProxylessNAS: Direct neural architecture search on target task and hardware,”

in ICLR, 20109.

[4] E Jang, S Gu, and B Poole, “Categorical reparameterization with Gumbel-Softmax,” in ICLR, 2017.

[5] M Courbariaux, Y Bengio, and J David, “BinaryConnect: training deep neural networks with binary weights -
during propagations,” NIPS, 2015.



ST (Straight-Through) NAS

forward

backward

continous relaxation

Aﬁ(af9)==]Ez~pacwfﬁe( )]

straight-through gradient

Qs (zs) = Z (k) (k)(:EZ
Zij ™ M’U,lt’l,(ﬂ'f,;j)

exp(at)
— -
Zk/::[ eXp(O‘z('j ))

k)

ZJ

Using ST gradients to support sub-graph sampling is key to achieve efficient NAS beyond DARTS and SNAS.

Comparison of different gradient-based NAS methods. ( _ _ _
—— « Computation costs are estimated relative to
Methods Loss « gradient Memory ackwar training a single model.
computation ) o .
DARTS 2P (q.9) - == 5T * (; : the memory size for training a single model.
o, continuous 1 . . . .
SNAS £(0.0) continuous KC, O(K) C, : the average memory size for st(_)rlng the
Proxyless Lo(z)  BinaryConnect C; + (K — 1)Ca o(1) output features for all connected pairs of nodes
ST-NAS L(c, 6) ST C1+ (K —1)C2 O(1) in a sub-graph. Usually we have C, < C; .

Y Bengio, N Leonard, and A Courville, “Estimating or propagating gradients through stochastic neurons for conditional

computation,” arXiv 2013.
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ST-NAS: overview =

Objective: L(«, 6) :/EMQ(Z) [Lo(2)]

Monte Carlo estimation

-

-———

[oR-o:

TOP,

sampled sub-graph NN parameters é architecture weights

____________________________________________________

OoP, OoP,

] OP, !
: OP, /O, N OPy /o | (wamup | @ @
supernet—>y) G (o) —Gp—{Fa)—Gp (w0 i freeze

~

sampling

I P, O
2 (2P ()

_____________________________________________________

o) P,

" alternately update

T -------------------------- [ retrain ]

ST-NAS procedure .



Experiments: ASR system

Settings:

1. Datasets: 80-hour WSJ and 300-hour
Switchboard.

2. LM: n-gram model.
Conditional Random Field

3. Loss: CTC/CTC-CRF based on CAT [1].

4. Candidate operations:
« TDNN-1-1 (-{C}-{D})
« TDNN-1-2
« TDNN-2-1
« TDNN-2-2
« TDNN-3-1 (Switchboard)

output

C half of context

Overview of Backbone of supernet
training framework

CTC/CTC-CRF
loss

A

Acoustic
Model

A

[ Audio Feature ] Subsampling

« TDNN-3-2 (Switchboard) searching
5. Search space: })\%} block

- WSJ: 4° = 4096 D

« Switchboard: 6% ~ 47000 dilation
[1] K An, H Xiang, and Z Ou, “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the 30

end-to-end approaches towards data efficiency and low latency,” INTERSPEECH, 2020.



Experiments: WSJ

7 ~ 7 ~ Ve ~ TDNN 7 ~ Vs ~ Ve ~
Subsample

~TDNN-2-1_

—_ - -

The red lines indicate one of the derived single model from the 5 runs of NAS on WSJ.

2 0.5 4 — TDNN-1-1 4 - i i _
5 —— TDNN-1-2

8 0.4 4 — TDNN-2-1 i - - . -
g —— TDNN-2-2

o

o 0.3 - 1 . . . .
2

$ 0.2 ] . ] ] ]
4

<

£ 0.1+ | . | |

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Step (x10%)

The evolution of architecture probabilities for the searching blocks in the NAS run that
yields the derived single model above.
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Experiments: results on WSJ

outperforming all other end-to-end ASR models

WERSs on the WSJ.
Methods eval92 dev93
EE-Policy-CTC [1] 5.53 9.21
SS-LF-MMI [2] 3.0 6.0
EE-LF-MMI [3] 3.0 -
FC-SR [4] 3.5 6.8
ESPRESSO [5] 3.4 5.9
oTC BLSTM 4.93 8.57
ST-NAS 4.72+0.03  8.82+0.07
BLSTM [6] 3.79 6.23
VGG-BLSTM [7] 3.2 5.7
CTC-CRF  TDNN-D* [§] 2.91 6.24
Randomsearch  2.824+0.01  5.71+0.03
ST-NAS 2.77+0.00 5.684+0.01
ST-NAS with fully CTC-CRF  2.81+0.01  5.74+0.02

* Obtained based on our implementation of the “TDNN-D” in [8].

[1] Y Zhou, C Xiong, et al, “Improving end-to-end speech recognition with
policy learning,” ICASSP, 2018.

[2] H Hadian, H Sameti, et al, “Flat-start single-stage discriminatively
trained HMM-Based models for ASR,” TASLP, 2018.

[3] H Hadian, H Sameti, et al, “End-to-end speech recognition using
lattice-free MMI,” INTERSPEECH, 2018.

[4] N Zeghidour, Q Xu, et al, “Fully convolutional speech recognition,”
arXiv preprint arXiv:1812.06864, 2018.

[5] Y Wang, T Chen, et al, “Espresso: A fast endto-end neural speech
recognition toolkit,” ASRU, 2019.

[6] H Xiang and Z Ou, “CRF-based single-stage acoustic modeling with
CTC topology,” ICASSP, 2019.

[7] KANn, H Xiang, et al, “CAT: A CTC-CRF based ASR toolkit bridging the
hybrid and the end-to-end approaches towards data efficiency and low
latency,” INTERSPEECH, 2020.

[8] V Peddinti, Y Wang, et al, “Low latency acoustic modeling using
temporal convolution and LSTMs,” IEEE SPL, 2018.



Experiments: results on WSJ

WERSs on the WSJ.
Methods eval92 dev93
EE-Policy-CTC [1] 5.53 9.21
SS-LF-MMI [2] 3.0 6.0
EE-LF-MMI [3] 3.0 -
FC-SR [4] 3.5 6.8
ESPRESSO [5] 3.4 5.9
oTe BLSTM 4.93 8.57
ST-NAS 4.72+0.03  8.82+0.07
BLSTM [6] 3.79 6.23
VGG-BLSTM[7] 3.2 57
CTC-CRF  TDNN-D* [8] 2.91 6.24
Randomsearch  2.824+0.01  5.71+0.03
ST-NAS 2.77+0.00 5.6840.01 —
ST-NAS with fully CTC-CRF ~ 2.81+0.01  5.7440.02

* Obtained based on our implementation of the “TDNN-D” in [8].

Better performance with lighter model,
under the same CTC-CRF loss

[1] Y Zhou, C Xiong, et al, “Improving end-to-end speech recognition with
policy learning,” ICASSP, 2018.

[2] H Hadian, H Sameti, et al, “Flat-start single-stage discriminatively
trained HMM-Based models for ASR,” TASLP, 2018.

[3] H Hadian, H Sameti, et al, “End-to-end speech recognition using
lattice-free MMI,” INTERSPEECH, 2018.

[4] N Zeghidour, Q Xu, et al, “Fully convolutional speech recognition,”
arXiv preprint arXiv:1812.06864, 2018.

[5] Y Wang, T Chen, et al, “Espresso: A fast endto-end neural speech
recognition toolkit,” ASRU, 2019.

[6] H Xiang and Z Ou, “CRF-based single-stage acoustic modeling with
CTC topology,” ICASSP, 2019.

[7] KANn, H Xiang, et al, “CAT: A CTC-CRF based ASR toolkit bridging the
hybrid and the end-to-end approaches towards data efficiency and low
latency,” INTERSPEECH, 2020.

[8] V Peddinti, Y Wang, et al, “Low latency acoustic modeling using
temporal convolution and LSTMs,” IEEE SPL, 2018.



Experiments: results on WSJ

WERSs on the WSJ.
Methods eval92 dev93
EE-Policy-CTC [1] 5.53 9.21
SS-LF-MMI [2] 3.0 6.0
EE-LF-MMI [3] 3.0 -
FC-SR [4] 35 6.8
ESPRESSO [5] 3.4 5.9
. BLSTM 4,93 8.57
ST-NAS 4.72+0.03  8.82+0.07
BLSTM [6] 3.79 6.23
VGG-BLSTM [7] 3.2 5.7
CTC-CRF  TDNN-D* [§] 2.91 6.24
Randomsearch  2.82+0.01  5.714+0.03 ]
ST-NAS 2.77+£0.00 5.68+0.01 —
ST-NAS with fully CTC-CRF 2.81+0.01  5.7440.02

* Obtained based on our implementation of the “TDNN-D” in [8].

Better than strong baseline.

[1] Y Zhou, C Xiong, et al, “Improving end-to-end speech recognition with
policy learning,” ICASSP, 2018.

[2] H Hadian, H Sameti, et al, “Flat-start single-stage discriminatively
trained HMM-Based models for ASR,” TASLP, 2018.

[3] H Hadian, H Sameti, et al, “End-to-end speech recognition using
lattice-free MMI,” INTERSPEECH, 2018.

[4] N Zeghidour, Q Xu, et al, “Fully convolutional speech recognition,”
arXiv preprint arXiv:1812.06864, 2018.

[5] Y Wang, T Chen, et al, “Espresso: A fast endto-end neural speech
recognition toolkit,” ASRU, 2019.

[6] H Xiang and Z Ou, “CRF-based single-stage acoustic modeling with
CTC topology,” ICASSP, 2019.

[7] KANn, H Xiang, et al, “CAT: A CTC-CRF based ASR toolkit bridging the
hybrid and the end-to-end approaches towards data efficiency and low
latency,” INTERSPEECH, 2020.
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Experiments: results on WSJ

WERSs on the WSJ.
Methods eval92 dev93
EE-Policy-CTC [1] 5.53 9.21
SS-LF-MMI [2] 3.0 6.0
EE-LF-MMI [3] 3.0 -
FC-SR [4] 3.5 6.8
ESPRESSO [5] 3.4 5.9
oTC BLSTM 4.93 8.57
ST-NAS 4.72+0.03  8.82+0.07
BLSTM [6] 3.79 6.23
VGG-BLSTM [7] 3.2 5.7
CTC-CRF  TDNN-D* [§] 2.91 6.24
Randomsearch  2.824+0.01  5.71+0.03
ST-NAS 2.77+0.00 5.684+0.01
ST-NAS with fully CTC-CRF = 2.81+0.01  5.74+0.02

* Obtained based on our implementation of the “TDNN-D” in [8].

Architectures searched with CTC are
transferable to be retrained with CTC-CRF.
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Experiments: results on Switchboard

WERS on the Switchboard.

Methods SW CH Params
TDNN-D-Small 15.2 26.8 7.64M
TDNN-D-Large 14.6 25.5 11.85M

Transferred from WSJ 12.5 23.2 n 11.89M

ST-NAS : ]
Searched on Switchboard 12.6 23.2 15.98M

The architecture searched in WSJ
IS transferable to Switchboard.

1. All experiments are trained with CTC-CRF. TDNN-D-Small is with the hidden size of 640,

which is the same as that of our searched models. TDNN-D-Large is with the hidden size of 800.

2. The transferred model is randomly taken from one of the 5 runs of NAS with CTC over WSJ,

and retrained on Switchboard.
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Conclusions

NAS is an appealing next step to advancing end-to-end ASR.

1. We review existing gradient-based NAS methods and develop an
efficient NAS method via Straight-Through gradients (ST-NAS).

2. We successfully apply ST-NAS to end-to-end ASR. Our ST-NAS
Induced architectures significantly outperform the human-designed
architecture across the WSJ and Switchboard datasets.

3. The ST-NAS method is flexible and can be further explored with
various backbones of the supernet and candidate operations.
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